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ABSTRACT 

Motivation: New high-throughput sequencing technologies have 

promoted the production of short reads with dramatically low unit 

cost. The explosive growth of short read datasets poses a challenge 

to the mapping of short reads to reference genomes, such as the 

human genome, in terms of alignment quality and execution speed. 

Results: We present CUSHAW, a parallelized short read aligner 

based on the compute unified device architecture (CUDA) parallel 

programming model. We exploit CUDA-compatible graphics hard-

ware as accelerators to achieve fast speed. Our algorithm employs 

a quality-aware bounded search approach based on the Burrows-

Wheeler transform (BWT) and the Ferragina Manzini (FM)-index to 

reduce the search space and achieve high alignment quality. Per-

formance evaluation, using simulated as well as real short read 

datasets, reveals that our algorithm running on one or two graphics 

processing units (GPUs) achieves significant speedups in terms of 

execution time, while yielding comparable or even better alignment 

quality for paired-end alignments compared to three popular BWT-

based aligners: Bowtie, BWA and SOAP2. CUSHAW also delivers 

competitive performance in terms of SNP calling for an E.coli test 

dataset. 

Availability: http://cushaw.sourceforge.net. 

Contact: liuy@uni-mainz.de; bertil.schmidt@uni-mainz.de 

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

1 INTRODUCTION  

The emergence of high-throughput sequencing technologies have 

led to an explosive growth of the size and availability of short read 

datasets. It is therefore important and challenging to efficiently and 

effectively map the sheer volume of short reads to genomes as 

large as the human genome for existing short read aligners. 

Existing aligners are mainly based on two approaches: hash ta-

bles and suffix/prefix tries. The aligners based on hash tables either 

hash the short reads or the reference genome. By hashing short 

reads, aligners including RMAP (Smith et al., 2008), MAQ (Li et 

al., 2008) SHRiMP (Rumble et al., 2009) usually have a flexible 

memory footprint but may have the overhead introduced by scan-
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ning the whole genome when few reads are aligned. By hashing 

the reference genome, aligners such as SOAP (Li et al., 2008), 

PASS (Campagna et al., 2009) and BFAST (Homer et al., 2009) 

can be efficiently parallelized using multiple threads, but require 

large amounts of memory to construct an index for the reference 

genome. 

The aligners based on suffix/prefix tries essentially perform in-

exact matching based on exact matching. Compared to hash tables, 

the advantage of the use of tries is that only one search pass is 

needed to find the alignments to multiple identical copies of a sub-

string in the reference genome, whereas the hash tables need to 

perform one search pass for each copy. The search using suf-

fix/prefix tries must rely on some algorithms and data structures, 

one such combination is the Burrows-Wheeler transform (BWT) 

(Burrows and Wheeler, 1994) and the FM-index (Ferragina and 

Manzini, 2000, 2005). Several short read aligners have been devel-

oped based on the BWT and the FM-index, including the popular 

Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009) and 

SOAP2 (Li et al., 2009). These three aligners provide support for 

two types of alignments: seeded alignment, where the high-quality 

end of a read is used as the seed, and end-to-end alignment. More-

over, paired-end mapping is usually also supported. Bowtie does 

not support gapped alignment, SOAP2 and BWA supports both 

ungapped and gapped alignments. The three aligners have been 

parallelized using multi-threading and are optimized for multi-core 

CPUs. Even though these aligners are fast, they are still time-

consuming for large-scale re-sequencing applications. 

The emerging many-core GPUs have evolved to be a powerful 

choice, in addition to multi-core CPUs and other accelerators like 

Cell/BE, for the high-performance computing world. Their com-

pute power has been demonstrated to reduce the execution time in 

a range of demanding bioinformatics applications including se-

quence alignment (Liu et al., 2009; Vouzis and Sahinidis, 2010), 

motif discovery (Liu et al., 2010; Kuttippurathu et al., 2011) and 

short read error correction (Liu et al., 2011). These successes have 

motivated us to employ GPU computing to accelerate short read 

alignment. 

As a first step, Blom et al. (2011) implemented a short read 

aligner based on the hash table approach using GPUs. However, 

this aligner can only work for small-scale microbial genomes and 

does not support paired-end mapping. In this paper, we present 
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CUSHAW, a parallelized algorithm to align short reads to large 

genomes, such as the human genome. It employs a quality-aware 

bounded search approach based on the BWT and the FM-index, 

and exploits CUDA-compatible GPUs to accelerate the alignment 

process. The performance of our algorithm is compared with three 

aligners: Bowtie, BWA and SOAP2, using both simulated and real 

short read datasets. Our experimental results show that our algo-

rithm achieves significant speedups in terms of execution time 

compared to the three aligners, while giving comparable or even 

better alignment quality for paired-end alignments. Furthermore, 

we have evaluated the performance of SNP calling from short read 

alignments using the different aligners. 

2 METHODS 

2.1 Burrows-Wheeler transform 

Given a text defined over an alphabet, a BWT is a reversible permutation of 

the text. For a genome sequence G defined over Σ={A, C, G, T}, the for-

ward BWT of G can be constructed in three steps. Firstly, a special charac-

ter $, which is lexicographically smaller than any character in Σ, is append-

ed to the end of G to form a new sequence G$. Secondly, a conceptual 

matrix M is constructed, whose rows are all cyclic rotations of G$ (equiva-

lent to all suffixes of G) sorted in lexicographical order, and each column is 

a permutation of G$. Finally, the transformed text L (i.e. the forward BWT 

of G) is formed by taking the last column of M. A suffix array SA , where 

SA[i] stores the starting position of the i-th smallest suffix of G, can be 

constructed from M using the one-to-one correspondence relationship be-

tween SA[i] and the i-th row of M (Ferragina and Manzini, 2005; Grossi 

and Vitter, 2005). 

The matrix M has a property called "last-to-first column mapping", 

which means that the i-th occurrence of a character in the last column cor-

responds to the i-th occurrence of the same character in the first column. 

This property constitutes the basis of string searching using BWT. A re-

verse BWT is constructed from the reverse orientation (not the reverse 

complement) of G and has the same properties as the forward BWT. A 

reverse BWT has its own SA. 

BWT construction has been extensively studied, including techniques to 

reduce the execution time and the peak memory size of the working space. 

We use the algorithm proposed by Hon et al. (2007), which only takes |G| 

bits of working space to construct the BWT (with a peak memory size of < 

1GB for the human genome). Since BWT construction is a pre-processing 

step which can be performed offline, we do not discuss it further. Readers 

can refer to Lam et al. (2008) for more information. In CUSHAW, we have 

used parts of the source code from the open-source BWT-SW (Lam et al., 

2008) and BWA algorithms. 

2.2 Searching for exact matches 

Given a sequence S that is a substring of G, each occurrence of S can be 

found using a backward search procedure based on the FM-index (Ferragi-

na and Manzini, 2005). Because all suffixes of G that have S as a prefix are 

sorted together, the search for all occurrences of S is actually equivalent to 

the search for an interval in SA. We define C(•) to denote an array of length 

|Σ|, where C(x) denotes the number of characters in G that are lexicograph-

ically smaller than xϵΣ, and define Occ(x, i) as the number of occurrences 

of x in L[0,i]. Thus, the SA interval for all occurrences of S in G can be 

recursively calculated, using the forward BWT from the rightmost to the 

leftmost of S, as 

              

( ) ( [ ]) ( [ ], ( 1) 1) 1,   0

( ) ( [ ]) ( [ ], ( 1)),   0

s s

e e

R i C S i Occ S i R i i S

R i C S i Occ S i R i i S

 = + + − + ≤ <


= + + ≤ <                     (1) 

where Rs(i) and Re(i) are the starting and end indices of the SA interval for 

the suffix of S starting at position i, and Rs (|S|) and Re(|S|) are initialized as 

0 and |G| respectively. The calculation stops if it encounters 

Rs(i+1)>Re(i+1), and the condition Rs(i)≤Re(i) stands if and only if the suf-

fix of S starting at position i is a substring of G. The total number of the 

occurrences of S in G is calculated as Re(0)−Rs(0)+1 if Rs(0)≤Re(0), and 0, 

otherwise. We can also perform the backward search using the reverse 

BWT with the difference that it calculates the SA interval from the leftmost 

to the rightmost of S. 

The calculation in Equation (1) only relies on the occurrence array Occ, 

not requiring L. However, it requires up to
24 logG G   bits for storing Occ 

in memory, as the total number of elements is 4|G| and each element 

takes
2log G   bits. To reduce the memory footprint of Occ, we trade off the 

execution speed and memory space using a reduced occurrence array 

(ROcc), which only stores parts of elements in Occ and calculates the oth-

ers with the help of L. In CUSHAW, ROcc stores the elements whose indi-

ces in Occ are multiples of K (K=128 by default) in memory. After using 2 

bits to represent each character in L, the total memory size can be reduced 

to
24 log / 2G G K G+   bits, which is significantly smaller than the whole 

occurrence array. The memory reduction is very important for our GPU 

implementation, due to the limited device memory and small cache sizes. 

For clarity, we define bwt to denote the combination of ROcc and L from 

the forward BWT and define rbwt to denote the combination from the 

reverse BWT.  

2.3 Searching for inexact matches 

Inexact matches to a genome are indispensable in the consideration of 

sequencing errors and genuine differences between sequenced organisms 

and reference genomes. The inexact matches can be obtained by introduc-

ing substitutions, insertions and deletions in the query and the subject se-

quences.  

In this paper, our algorithm only supports ungapped alignment, i.e. 

CUSHAW does not allow insertions and deletions. Thus, the search for 

inexact matches can be transformed to the search for exact matches of all 

permutations of all possible bases at all positions of a short read. All the 

permutations can be represented by a complete 4-ary tree (see Figure S1 in 

the supplementary data), where each permutation corresponds to a path 

routing from the root to a leaf (the root node is Ø, meaning an empty 

string).  Each node in the path corresponds to a base in a read that has the 

same position. Hence, all inexact matches can be found by traversing all 

paths using either depth-first search (DFS) or breadth-first search (BFS) 

approaches. BFS requires a large amount of memory to store the results of 

all valid nodes at the same depth. However, the approach is infeasible for 

GPU computing, since we need to launch hundreds of thousands of threads 

to leverage the compute power of GPUs and thus can only assign a small 

amount of device memory to each thread. Instead, our aligner uses the DFS 

approach, whose memory consumption is small and directly proportional to 

the depth of the tree (i.e. the full length of a read). Even though recursive 

functions are supported for the Fermi architecture (NVIDIA, 2010), we use 

a stack framework to implement the DFS approach. 

2.4 Locating the occurrences 

After getting the SA interval, the position of each occurrence in G can be 

determined by directly looking up the SA. However, it will 

take
2logG G   bits if the entire SA is loaded into memory. This large 

memory consumption is prohibitive for large genomes (e.g. for the human 

genome, the SA takes about 12GB RAM). Fortunately, we can reconstruct 

the entire SA from parts of it. Ferragina and Manzini (2005) have shown 
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that an unknown value SA[i], can be re-established from a known SA[j] 

using Equation (2). 

                                           
( )

[ ] [ ]

( )t

SA i SA j t

j iβ

= +


=
                                           (2) 

where ( ) ( )t
iβ means repeatedly applying the function ( )iβ t times. The   

function employs last-to-first column mapping for the i-th row of M and is 
calculated as 

                                      ( ) ( [ ]) ( [ ], )i C L i Occ L i iβ = +                                 (3) 

In Equation (2), t is actually the distance between the two starting positions 

(i.e. SA[i] and SA[j]) in G. Thus, for any unknown i-th element of SA, we 

can calculate its value SA[i] in at most k iterations if we store the SA ele-

ments whose values are multiples of a constant number k (i.e. the starting 

positions in G are multiples of k). However, this will complicate the storage 

of SA by introducing additional data structures, making it difficult to map 

to GPU memory. Instead, we construct a reduced suffix array (RSA) by 

simply storing SA[i] whose index i is a multiple of k (k=32 by default). This 

approach reduces the total memory size of a suffix array to 

2log /G G k   bits, but cannot guarantee to complete each computation 

within k iterations. This is because a maximal distance k between i and j 

does not mean a maximal distance k for starting positions SA[i] and SA[j] in 

G. The selection of k is a trade-off between look-up time and memory 

space. For a suffix array index i that is a not multiple of k, we repeat t itera-

tions using Equation (3) until j is a multiple of k, where SA[j] is equal to 

RSA[j/k], and then calculate SA[i] as SA[j]+t following Equation (2). 

2.5 Mapping using CUDA 

To design an efficient short read alignment algorithm using CUDA, it is 

critical to fully understand the underlying hardware architecture and pro-

gramming constraints. More than a computing architecture, CUDA is also a 

parallel programming language that extends the general programming 

languages, such as C/C++ and Fortran, with a minimalist set of abstractions 

to express parallelisms. A CUDA program is comprised of code for the 

host and kernels for the devices. A kernel is a program launched over a set 

of lightweight parallel threads on GPUs, where the threads are organized 

into a grid of thread blocks. All threads in a thread block are split into small 

groups of 32 parallel threads, called warps, for execution. These warps are 

scheduled in a single instruction, multiple thread fashion. Full efficiency 

and performance can be obtained when all threads in a warp execute the 

same code path. It is the programmers' responsibility to limit the amount of 

thread divergence. 

A CUDA-enabled GPU is built around a fully configurable scalable pro-

cessor array, organized into a set of streaming multiprocessors (SMs) using 

two different architectures: Tesla architecture (Lindholm et al., 2008) and 

Fermi architecture (NVIDIA, 2010). For the Tesla architecture, the number 

of SMs per GPU device varies from generation to generation, and each SM 

comprises 8 scalar processors (SPs), sharing 8KB or 16 KB of 32-bit regis-

ters depending on compute capabilities and a fixed 16KB of on-chip shared 

memory. The local and global memory is not cached and the amount of 

local memory size per thread is 16 KB. For the newer Fermi architecture, 

each GPU device contains 16 SMs with each SM comprising 32 SPs, where 

each SM has a total number 32 KB of 32-bit registers and has a configura-

ble shared memory size from the 64 KB on-chip memory. This on-chip 

memory can be configured, for each kernel at runtime, as 48KB of shared 

memory with 16 KB L1 cache or as 16 KB of shared memory with 48 KB 

L1 cache. The Fermi architecture has a larger local memory size of 512 KB 

per thread than the Tesla architecture. Furthermore, a L1 cache of configu-

rable size per SM and a unified L2 cache of size 768 KB per device is 

introduced for local and global memory caching. The L1/L2 cache hierar-

chy offers the potential to significantly improve the performance compared 

to the direct access to the external device memory. The global memory 

caching in the L1 cache can be disabled at compile time, whereas the local 

memory caching in L1 cannot be disabled. Thus, it is useful to find out the 

best combination for a given kernel: 16KB or 48 KB per-SM L1 cache 

(vice versa for shared memory) with or without global memory caching in 

L1 and with more or less usage of local memory. Kernels that use a large 

amount of local and global memory might be able to benefit from the 48 

KB L1 cache. 

CUSHAW is optimized for the Fermi architecture, where a thread is as-

signed to align a short read as well as its reverse complement to the refer-

ence genome. Highest performance is achieved by using 64 threads per 

thread block. To alleviate the device memory pressure, CUSHAW organiz-

es the input short reads into batches, and employs multiple passes to com-

plete the computation, where each pass processes a batch of reads. The read 

batch is stored in texture memory from linear memory at start-up time, and 

then is loaded into shared memory when performing alignments since we 

see slight performance improvement after using shared memory. This per-

formance gain comes from a new feature of shared memory in the Fermi 

architecture. More flexible mechanisms are supported to avoid bank con-

flicts when two or more threads access any bytes in the same 32-bit bank of 

shared memory. For read access, it broadcasts multiple words to the re-

questing threads in a single transaction, and for write access, it requires that 

each byte is written by only one of the threads. 

As mentioned earlier, CUSHAW searches for inexact matches by trav-

ersing the tree in a DFS way. This traversing is implemented using a stack 

data structure. It is impractical to store the stack per thread in shared 

memory even though we configure a shared memory size of 48 KB. In this 

case, we implement the stack in the cached local memory for each thread. 

For the alignment of a read, both bwt and rbwt are used for the calculation. 

They are frequently accessed and do not show good data locality when 

performing alignments. Considering the large amount of device memory 

consumed by bwt and rbwt (e.g. the human genome requires about 2.2 GB 

memory), we store them in cached global memory, instead of cached tex-

ture memory. This organization is based on two considerations: (1) we do 

not need some other features, like address calculations or texture filtering, 

that can benefit from texture fetches; and (2) L1 cache has a higher band-

width than the texture cache. Hence, for access to large memory, we can 

expect a higher performance gain through regular global memory loads 

cached in L1 compared to texture fetches. After tuning, CUSHAW 

achieves the best performance when the GPU is configured with a 48 KB 

per-SM L1 cache with global memory cached in L1. 

CUSHAW uses a quality-aware bounded search approach to reduce the 

search space and guarantee alignment. It supports two types of alignments: 

seeded alignment and end-to-end alignment. The end-to-end alignment is 

considered as a special case of the seeded alignment which considers the 

full length of a read as the seed size. The reverse complement of a read is 

also incorporated and for clarity, the following discussions only refer to the 

forward strand. The quality-aware property exploits the numerical quality 

score of each base in a read. A quality score Q is assumed to be calculated 

from the probability p that the corresponding base is incorrect, following 

the PHRED (Ewing and Green, 1998) definition 1010logQ p= − . Lower 

quality scores indicate higher probabilities of incorrect bases. The bounded 

search is able to reduce the search space by employing several constraints 

on sums of quality scores and maximal allowable number of mismatches. 

The use of these constraints can prune branches of the complete tree ahead 

of time and thus significantly reduce the number of backtracks. The con-

straints have been used in other aligners, like Bowtie, BWA and SOAP2, in 

part or whole and are detailed as 

• MMS: the maximal number of mismatches allowed in the seed (de-

fault = 2); 

• MMR: the maximal number of mismatches allowed in the full length 

of a read, which is calculated as [ ]MMS err S+ × , where err is the uni-

form base error rate (default = 4%). 
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• QSS: the maximal sum of quality scores at all mismatched positions 

in the seed (default = 70); 

• QSR: the maximal number of quality scores at all mismatched posi-

tions in the full length of a read (default = 3×QSS). 

• QSRB: the maximal QSR among the currently selected best align-

ments, which is updated as the aligning process goes on; 

Increasing MMS and MMR might enable the alignment of more reads but 

will result in a longer execution time. Decreasing QSS and QSR focuses the 

aligner more on mismatches with low-quality scores and can thus facilitate 

earlier pruning of some branches. However, smaller values also carry the 

risk of pruning real alignments. Figure 1 shows the workflow of 

CUSHAW. 

 

 
 

Fig. 1 Program workflow of CUSHAW 

CUSHAW outputs the alignments with the smallest quality score sum 

over all mismatched positions in the full length read alignment. All possible 

alignments are compared and enumerated by employing the above con-

straints. Our alignment approach is different from the ones used in Bowtie 

and BWA. Bowtie allows any number of mismatches in the non-seed re-

gion and outputs the “best” alignment after a specified maximum number 

of search attempts. BWA does not use base quality scores when performing 

alignments but assigns different penalties on mismatches and gaps. It then 

reports the alignment with the best score that is calculated from the number 

of mismatches and gaps in the alignment. 

When searching along a path from top to bottom using DFS, we check 

the quality score constraints: QSS, QSR and QSRB against the current sum 

of quality scores at all mismatched positions in the path from the root to the 

current node (including the current node). If the current quality score sum 

does not satisfy all the three constraints, we will stop searching the sub-

trees of the current node. Additionally, we must confine the number of 

mismatches within the allowable ranges. To facilitate the bounded search 

using the constraints with respect to the number of mismatches, we esti-

mate the lower bound of the number of substitutions that are required to 

transform the substring, represented by the sequence of nodes in the sub-

path down from the current node to the leaf, to exactly match to the ge-

nome. This estimation has been used in BWA and is calculated based on 

the observation that if a sequence S exactly matches to a genome, any sub-

string of S must exactly match to the genome. Hence, the lower bound of 

the number of substitutions for a string can be estimated by counting the 

number of all constituent non-overlapping substrings that do not exactly 

match to the genome. We define a vector DIFFS(•) for the full length of S, 

where DIFFS(i) represents the lower bound of the number of substitutions 

in the substring S[i+1, |S|-1] (0≤i<|S|-1). When using the seeded alignment 

with a seed size W, we calculate another vector SDIFFS(•) for the seed, 

where SDIFFS(i) represents the lower bound of the number of substitutions 

in the substring S[i+1, W-1] (0≤i<W-1). The current node corresponds to a 

base (mutated or not) at position i of S, and holds the number of mismatch-

es in the sub-path routing to the root (UPMM), including the current node. 

We will not traverse the sub-trees of the current node if either UPMM + 

SDIFFS(i) > MMS when the current node is in the seed region or UPMM + 

DIFFS(i) > MMR for the full length. Figure 2 shows the pseudocode of the 

CUDA kernel for the search from the forward-strand of S. 

 
#bwt: the forward BWT of genome G; rbwt: the reverse BWT of genome G; S: a forward-strand short 
#read; W: seed length;

1. estimate the lower bound of the number of substitutions in substring S[i+1, |S|-1] for the full length;
diffs = 0; f = 0; l = |G|;
for i=|S|-1 to 0 do

f = bwt.C(S[i]) + bwt.Occ(S[i], f-1) + 1; l = bwt.C(S[i]) + bwt.Occ(S[i], l); DIFFS[i] = diffs;
if f > l then

f = 0; l = |G|; ++diffs;
fi

done
2. estimate the lower bound of the number of substitutions in substring S[i+1, W-1] for the seed;

diffs = 0; f = 0; l = |G|;
for i=W-1 to 0 do

f = bwt.C(S[i]) + bwt.Occ(S[i], f-1) + 1; l = bwt.C(S[i]) + bwt.Occ(S[i], l); SDIFFS[i] = diffs;
if f > l then

f = 0; l = |G|; ++diffs;
fi

done
3. initialize the stack from the first base of S;

while (stack is not empty) do
access to the top node (the current node);
if have attempted all mutations for the current node then

pop out the top node from the stack;
continue;

fi
mutate the base corresponding to the current node;
calculate the quality score sum at all mismatched positions down to the current node;
check whether the constraints QSS, QSR, QSRB, MMS and MMR are satisfied;
if not all constraints are satisfied then

pop out the top node from the stack;
continue;

fi
calculate the suffix array interval f and l from the mutation in the current node using rbwt.
if f <= l then

if reaching the end of S then
store the hit and update QSRB; #a hit is found

else
push the next base in S into the stack as well as other information;

fi
fi

done  

Fig. 2 Pseudocode of the CUDA kernel for the search from the forward 

strand 

To calculate the mapping positions in G using RSA, an approach is to 

calculate the SA intervals of the best alignments on GPUs and the mapping 

positions using Equation (2) on CPUs. This approach requires loading an 

RSA and its corresponding bwt (or rbwt) into memory to improve execution 

speed, which introduces more memory overhead for the host. Moreover, 

the calculation of j and t in Equation (2) imposes more compute overhead, 

as well, and thus increases the execution time. Fortunately, the calculation 

of j and t is independent of the RSAs and can be directly computed using 

the corresponding bwt (or rbwt) after gaining the SA interval. Hence, we 

select the best alignments, calculate the j and t values on GPUs and then 

output the j and t instead of the SA interval. Thus, the mapping positions 

can be calculated very quickly on the host by only two operations: one 

table lookup and one addition, after loading the RSAs into memory. 

As mentioned above, CUSHAW attempts to find the best alignments in 

the full length read alignment by enumerating and evaluating all possible 

alignments. Given a read of length l and a specific MMR, the total number 

of possible alignments is 0 3MMR k k

k l
C=Σ , which increases polynomially with l 

(postulating MMR is fixed) and increases exponentially with MMR (postu-

lating l is fixed). Furthermore, to miss as few correct alignments as possible, 

we have to accordingly increase MMR as l becomes larger. Even though the 

search space can be significantly reduced by employing the other four 

constraints, the number of possible alignments that needs to be evaluated 

grows significantly for larger l and MMR. In this context, we have extended 

the basic version of CUSHAW (as discussed above) by introducing a new 

progressive constraint approach, with respect to MMR, in order to further 

reduce the search space for long reads. In this extended version, the pro-

gressive constraint approach works by employing an additional constraint 
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on the maximal allowable number of mismatches MMR′ in the current 

alignment path of length l′ (1≤l′≤l), not only in the full length read align-

ment, as the alignment progresses. This approach is likely to lower the 

single-end alignment quality, since it excludes the evaluation of those pos-

sibly correct alignments with mismatches clustering in small regions, but 

does improve the execution speed by further reducing the search space. For 

each l′, its MMR′ is independent of reads to be aligned, and is pre-

calculated before alignment using the following method. We consider the 

number of base errors m in a read as a random variable and postulate that 

all bases have the same error probability p (2.5% in our case), for simplici-

ty. Thus, the probability of having k base errors in a sequence of length l′ 

is ( ) (1 )k k l k

l
P m k C p p ′−

′= = − , where m follows a binomial distribution. In our 

case, this probability can be approximated using a Poisson distribution with 

the mean λ=l′p. For each l′ ≤seed size, its MMR′ is set to MMS; and for 

each l′ >seed size, its MMR′ is set to max{MMS+1, min{k|P(m>k)<err}}, 

where err is the uniform base error rate specified for the input reads. By 

default, CUSHAW supports a maximal read length of 128 (can be config-

ured up to 256). The MMR′s for all l′ (1≤ l′≤128) are pre-calculated on the 

host prior to alignment, and are then loaded into cached constant memory 

on the GPU devices. CUSHAW releases the basic and the extended ver-

sions as two separate executable binaries, and uses the basic version to 

align <70-bp reads and the extended version to align ≥70-bp reads for all 

tests in this paper. 

2.6 Paired-end mapping 

CUSHAW supports paired-end mapping and completes it in three steps 

for a read pair S1 and S2 on the host. Firstly, if both S1 and S2 have matches 

to the reference genome, we iterate each mapping position of S1 and calcu-

late the distance to each mapping position of S2. If a distance satisfies the 

maximal insert size, the read pair is considered paired and the correspond-

ing mapping positions are output, finishing the pairing of S1 and S2. Sec-

ondly, if S1 has matches to the genome (no matter whether S2 has or not), it 

iterates some mapping positions (at most 2 by default) of S1 and estimates 

the region in the genome to the right of S1, where S2 is likely to have a 

match, using the maximal insert size. The Smith-Waterman algorithm 

(Smith and Waterman, 1998) is used to find the optimal local alignment for 

S2 and the genome region. If we find an alignment satisfying the constraints 

specified by the user, such as the maximal number of unknown bases in the 

short read and the minimal number of bases in the optimal local alignment 

for both the short read and the genome region, the read pair is considered 

paired and otherwise we will continue the pairing process. Thirdly, if S2 has 

matches to the genome (no matter whether S1 has or not), it uses the same 

pairing method as in the previous step except that the estimated genome 

region is to the left of S2. If we still fail to find an optimal local alignment 

satisfying the constraints specified by the user in this step, the read pair is 

considered unpaired. The Smith-Waterman algorithm is the most time 

consuming in the pairing process, having a time complexity of O(l1l2) for a 

sequence pair with lengths l1 and l2 respectively, and thus the more reads 

that are paired in the first step, the shorter the overall execution time. 

Moreover, the maximal insert size also has an impact on the number of 

reads that are paired and the overall execution time. This pairing process 

has been optimized for multi-core CPUs using a multi-threaded design. 

Figure 3 shows the workflow of the multi-threaded paired-end mapping. 

For all paired-end alignments in this paper, CUSHAW uses four CPU 

threads. 

3 RESULTS 

We have evaluated the performance of CUSHAW by comparing to 

three popular short read aligners: Bowtie (version 0.12.7), BWA 

(version 0.5.9rc1) and SOAP2 (version 2.21) using simulated and 

real short read datasets (see Table 1). The first three datasets in 

Table 1 are paired-end datasets simulated from the human genome 

using the wgsim utility program in the SAMtools package (version 

0.1.17) (Li et al. 2009),  with 0.5% SNP mutation rate, 0.05% indel 

mutation rate and 1% uniform sequence base error rate. The insert 

size is drawn from a normal distribution N(200, 10) for the SIM36 

and SIM72 datasets and from a normal distribution of N(500, 30) 

for the SIM120 dataset. The simulated datasets are available for 

download at http://sourceforge.net/projects/cushaw/files/data. The 

last five datasets are real datasets, named after their accession 

numbers in the NCBI Sequence Read Archive. All the tests are 

conducted on a workstation with an AMD Opteron 2378 2.4 GHz 

quad-core processor and 8 GB RAM running the Linux operating 

system. Two Fermi-based Tesla C2050 GPUs are installed in the 

workstation. A single GPU consists of 14 SMs (a total of 448 SPs) 

with a core frequency of 1.15 GHz and with 3 GB of user available 

device memory (after turning off error correcting code). 

 

Read a batch of read pairs Finish the paired-end mapping

1 2 3

No

Process the read batch in parallel by multiple threads, where 

each thread is assigned to process a read pair every time

Get the alignment 

information of the read 

pair S1 and S2 from the 

intermediate alignment 

files

No

Yes

Output the alignments 

of S1 and S2 in paired-

end mode

No

Output the alignments 

in single-end mode if 

either S1 or S2 has 

matches

Any matches satisfying the 

insert size constraint if both S1

and S2 have matches?

If S1 has matches, compute the 

optimal local alignment for S2 and 

the estimated genome region using 

the Smith-Waterman algorithm

An optimal local alignment 

satisfying the constraints specified 

by the user for S2?

If S2 has matches, compute the 

optimal local alignment for S1 and 

the estimated genome region using 

the Smith-Waterman algorithm

An optimal local alignment 

satisfying the constraints specified 

by the user for S1?

Yes

Yes

 

Fig. 3 Workflow of the multi-threaded paired-end mapping 

Table 1. Datasets used for performance evaluation 

Datasets Type Read length No. of Reads Insert size 

SIM36 PE 36 2,000,012 200 bp 

SIM72 PE 72 2,000,012 200 bp 

SIM120 PE 120 2,000,012 500 bp 

SRR002273 PE 36 8,552,428 200 bp 

ERR000589 PE 51 24,277,796 200 bp 

SRR033552 PE 75 20,483,110 200 bp 

SRR034966 PE 100 41,010,976 500 bp 

ERR024139 PE 100 53,542,962 311 bp 

3.1 Alignment quality 

The alignment quality is conventionally evaluated by computing 

how many single-end reads are found to have matches to the refer-
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ence genome and how many paired-end reads are paired together 

using simulated or real short read datasets. Since we know the 

exact positions of each read in the simulated datasets, we introduce 

two more stringent measures to compare the aligners: 

• MCP: meaning the number of reads that have a match to their 

correct positions with a maximal distance of d (d=5 in our 

evaluation) in the genome; 

• EMCP: meaning the number of reads that have an exact 

match to their correct positions in the genome. 

The distance d for the MCP measure is considered because of 

two reasons: (1) a few contiguous low-quality bases starting from 

the 3’ end and a few contiguous leading or trailing unknown bases 

might be trimmed and (2) gaps might be introduced. In the follow-

ing evaluations, the single-end alignments consider all aligned 

reads and the paired-end alignments take into account only the 

reads that have been paired to calculate the MCP and EMCP. Thus, 

the MCP and EMCP for paired-end alignments might be underes-

timated compared to when all aligned reads are considered. For all 

aligners, we have tuned the parameters (see the supplementary data 

for details) with the intention to gain the highest performance. 

We first evaluate all aligners using the three simulated datasets 

(see Table 2). For both the single-end and paired-end alignments, 

BWA outperforms all other aligners, while Bowtie performs worst, 

in terms of all measures. SOAP2 performs slightly better than 

CUSHAW for the single-end alignment, but the latter outperforms 

the former for the paired-end alignment (with an exception of the 

SIM36 dataset). After using paired-end mapping, both CUSHAW 

and BWA were able to improve MCP and EMCP. However, both 

Bowtie and SOAP2 do not always follow this trend. We have also 

simulated three datasets with a higher uniform base error rate of 

4%. The dataset information as well as the alignment results can be 

obtained from the supplementary data. Using these three datasets, 

the alignment quality varies much for the aligners, where Bowtie 

outperforms the other aligners for the single-end alignment and 

CUSHAW performs best for the paired-end alignment. 

Finally, we have assessed the alignment quality (see Table 3) us-

ing the five real datasets in Table 1. For the single-end alignment, 

CUSHAW is inferior to both Bowtie and SOAP2 for all datasets. 

CUSHAW aligned more reads than BWA for the SRR002273 and 

ERR000589 datasets, but aligned fewer for the other three datasets. 

This is due to the progressive constraint approach, which is likely 

to discard a relevant part of the single-end alignment search space. 

For the paired-end alignment, CUSHAW performs best and BWA 

outperforms SOAP2, for all datasets. BWA is superior to Bowtie 

for the SRR002273, ERR000589, SRR033552 and ERR024139 

datasets, and is slightly inferior to it for the SRR034966 dataset. 

Similar to the results using simulated datasets, the performance of 

both CUSHAW and BWA improves after using paired-end map-

ping, but the performance of both Bowtie and SOAP2 deteriorates. 

For a real dataset, it is difficult for us to prove the correctness of 

the alignments rescued in the paired-end mapping stage, but we 

can get some supportive evidences from the paired-end alignments 

of all simulated datasets to imply the effectiveness of our paired-

end mapping policy. 

Table 3. Alignment results for real datasets (in percentage) 

Datasets Type CUSHAW Bowtie BWA SOAP2 

SRR002273 SE 92.58 94.69 90.26 94.85 

PE 95.77 87.56 90.85 87.89 

ERR000589 SE 94.76 96.51 94.06 96.87 

PE 97.72 92.42 94.60 91.09 

SRR033552 SE 88.71 91.70 89.12 92.03 

PE 94.46 86.86 92.35 82.17 

SRR034966 SE 78.89 91.25 85.10 85.10 

PE 90.56 90.55 90.51 73.11 

ERR024139 SE 89.69 92.09 93.28 92.68 

PE 95.11 87.58 94.46 86.25 

3.2 SNP calling 

To evaluate the SNP calling performance of the respective 

aligners, we first aligned the 20.8 million 200bp-insert-size paired-

end reads (accession number SRR001665 in NCBI SRA, whose 

reference genome is E. coli K12 MG1655 with accession number 

NC_000913 in GenBank) to a related reference genome E.coli 536 

(accession number NC_008253) using the paired-end alignment 

for each aligner. Secondly, we called SNPs from the aligned reads 

using the mpileup utility program in SAMtools. Finally, we com-

pared the identified SNPs with the “correct” SNPs of the two ge-

nomes. Since the correct SNPs are unknown, we have employed a 

cross-match approach to predict the correct SNPs, where a SNP is 

Table 2. Alignment results for simulated datasets 

Type Aligner 

SIM36 SIM72 SIM120 

Aligned  

(Paired) 

MCP EMCP Aligned  

(Paired) 

MCP EMCP Aligned  

(Paired) 

MCP EMCP 

SE 

CUSHAW 1,822,197 1,596,293 1,595,327 1,791,559 1,705,766 1,704,743 1,705,318 1,649,885 1,648,954 

Bowtie 1,822,191 1,593,327 1,592,366 1,775,714 1,686,975 1,685,982 1,648,097 1,597,055 1,596,288 

BWA 1,823,640 1,598,321 1,597,298 1,827,683 1,740,344 1,739,150 1,819,577 1,764,549 1,763,384 

SOAP2 1,825,550 1,598,291 1,597,316 1,799,550 1,706,894 1,705,859 1,765,747 1,705,692 1,704,724 

PE 

CUSHAW 1,841,802 1,691,464 1,689,415 1,844,816 1,769,581 1,767,417 1,838,152 1,787,936 1,785,860 

Bowtie 1,793,318 1,676,232 1,674,846 1,705,892 1,648,008 1,647,021 1,469,346 1,436,112 1,435,416 

BWA 1,832,606 1,757,384 1,755,500 1,843,374 1,796,106 1,794,208 1,844,454 1,809,769 1,807,890 

SOAP2 1,793,426 1,700,966 1,699,779 1,740,120 1,685,439 1,684,416 1,578,630 1,541,413 1,540,692 
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considered to be correct if and only if it has been identified by both 

the dnadiff utility program in MUMmer (version 3.23) (Kurtz et 

al., 2004) and the combination of BWA-SW (Li and Durbin 2010) 

and SAMtools, through whole genome alignments. The detailed 

procedure for identifying the “correct” SNPs, as well as the SNP 

files, is given in the supplementary data. 

We evaluated the SNP calling performance of all aligners using 

the precision, recall and F-score measures (see Table 4).  Precision 

is defined as TP/(TP+FP), recall as TP/(TP+FN) and F-score as 

2×precision×recall/(precision+recall), where TP is a true positive, 

representing a match with a “correct” SNP, FP is a false positive 

representing a mismatch, and FN represents a “correct” SNP that 

was not identified. From the single example presented in Table 4, 

CUSHAW has the best recall, but gives the worst precision, 

whereas Bowtie yields the best precision, but gives the worst recall. 

In terms of the F-score, BWA is the best, CUSHAW is second and 

Bowtie is the worst. 

Table 4. SNP calling accuracy comparison 

 CUSHAW Bowtie BWA SOAP2 

TP 96,980 84,286 96,690 92,343 

FP 10,780 5,889 8,611 9,314 

FN 2,472 15,166 2,762 7,109 

Precision 90.00% 93.47% 91.82% 90.84% 

Recall 97.51% 84.75% 97.22% 92.85% 

F-score 0.936 0.889 0.944 0.918 

3.3 Execution speed 

Besides alignment quality, another major concern about short read 

alignment is the execution speed considering the sheer volume of 

short reads produced from the high-throughput sequencing tech-

nologies. We have compared the speed of CUSHAW on one and 

two GPUs to the three aligners using multiple threads. In this pa-

per, all the execution times (in seconds) are wall clock times that 

are taken to complete the whole computation for each aligner. 

Table 5 shows the execution speed comparison between aligners 

for the single-end and paired-end alignments respectively using the 

five real datasets. The table shows the execution times of 

CUSHAW using a single GPU and two GPUs, and the execution 

times of the other three aligners using a single thread and four 

threads on a quad-core CPU. Each aligner uses the same parame-

ters as in Table 3 with an additional parameter to specify the num-

ber of GPUs or threads. 

For the single-end alignment, Bowtie runs much faster than 

BWA and SOAP2 for each dataset. Bowtie on a single CPU core 

(4 CPU cores) runs faster than CUSHAW on a single GPU (2 

GPUs) for SRR034966, but the latter is faster than the former for 

the SRR002273, ERR000589 and ERR024139 datasets. For 

SRR033552, CUSHAW runs faster on a single GPU than Bowtie 

on a single CPU core, while Bowtie on 4 CPU cores is faster than 

CUSHAW on 2 GPUs. However, CUSHAW significantly outper-

forms both BWA and SOAP2 for all datasets. Compared to BWA 

(SOAP2) on a single CPU core, CUSHAW on a single GPU is 

about 12.0× (7.9×) faster for SRR002273, is about 10.0× (5.4×) 

faster for ERR000589, is about 6.2× (3.4×) faster for SRR033552, 

is about 6.4× (6.5×) faster for SRR034966, and is about 6.8× 

(4.0×) faster for ERR024139. When compared to BWA (SOAP2) 

on 4 CPU cores, our algorithm on two GPUs is about 6.9× (4.8×) 

faster for SRR002273, is about 4.8× (2.6×) faster for ERR000589, 

is about 3.2× (1.8×) faster for SRR033552, is about 3.4× (3.3×) 

faster for SRR034966, and is about 3.6× (2.1×) faster for 

ERR024139. From the above analysis, we can see that the 

speedups of CUSHAW over BWA and SOAP2 generally (not 

absolutely) decrease as the read lengths increase for the single-end 

alignment, but they are still considerable even for the two 100-bp 

datasets. Furthermore, CUSHAW on a single GPU (2 GPUs) 

achieves nearly stable speedups over BWA on a single CPU core 

(4 CPU cores) for the three datasets of read lengths ≥75 (i.e. 

SRR033552, SRR034966 and ERR024139), where the average 

speedup is about 6.5±0.2 (3.4±0.2). 

For the paired-end alignment, CUSHAW achieves significant 

speedups over all other three aligners (with an exception that for 

SRR034966, CUSHAW on two GPUs executes only 1.3× faster 

than Bowtie on 4 CPU cores). On a single GPU (2 GPUs), 

CUSHAW achieves an average speedup of 5.7 (2.4) with a highest 

of 11.8 (4.7) over Bowtie, an average speedup of 8.3 (5.5) with a 

highest of 14.5 (12.2) over BWA, and an average speedup of 8.5 

(4.1) with a highest of 24.3 (10.4) over SOAP2, where the three 

Table 5. Execution speed comparison between aligners using real datasets 

Type Aligner 

SRR002273 (36-bp) ERR000589 (51-bp) SRR033552 (75-bp) SRR034966 (100-bp) ERR024139 (100-bp) 

1 core 

(1 GPU) 

4 cores 

(2 GPUs) 

1 core 

(1 GPU) 

4 cores 

(2 GPUs) 

1 core 

(1 GPU) 

4 cores 

(2 GPUs) 

1 core 

(1 GPU) 

4 cores 

(2 GPUs) 

1 core 

(1 GPU) 

4 cores 

(2 GPUs) 

SE 

CUSHAW 226 129 1,365 852 3,096 1,704 9,532 5,051 7,077 3,930 

Bowtie 709 249 3,072 944 3,430 940 7,735 2,115 14,379 3,949 

BWA 2,715 896 13,662 4,057 19,055 5,515 60,957 17,308 48,128 14,176 

SOAP2 1,788 625 7,307 2,252 10,470 3,084 62,362 16,815 28,381 8,417 

PE 

CUSHAW* 292 203 1,700 1,067 3,441 2,004 10,716 6,528 8,179 5,031 

Bowtie 1,271 398 20,017 5,053 15,430 4,023 32,126 8,366 41,177 10,634 

BWA 4,246 2,469 15,713 6,118 20,123 6,569 63,121 19,412 49,989 16,157 

SOAP2 7,098 2,103 15,986 4,862 11,830 3,405 48,525 13,337 29,028 8,528 

*CUSHAW uses four threads to perform the paired-end mapping on the CPU. 
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aligners run on a single CPU core (4 CPU cores) for all five da-

tasets. Similar to the single-end alignment, the speedups of 

CUSHAW over BWA and SOAP2 generally decrease with the 

increase of read lengths for the paired-end alignment, but they are 

also still considerable for the two 100-bp datasets. Moreover, 

CUSHAW on a single GPU (2 GPUs) also achieves nearly stable 

speedups over BWA on a single CPU core (4 CPU cores) for the 

three datasets of read lengths ≥75, with an average speedup of 

about 5.9±0.1 (3.2±0.1). 

As mentioned above, with the increase of read lengths, the num-

ber of possible alignments that needs to be evaluated by CUSHAW 

grows significantly. With the progress in high-throughput sequenc-

ing technologies, longer reads (e.g. ≥150 bps) will become more 

frequent in the future. This will pose challenges to CUSHAW in 

terms of execution speed, since our aligner attempts to evaluate all 

possible alignments to find the best alignments by employing some 

constraints. 

4 CONCLUSIONS 

We have presented CUSHAW, a parallelized BWT-based short 

read aligner to the human genome. The algorithm is based on the 

CUDA C++ parallel programming model and employs CUDA-

compatible graphics hardware as accelerators to achieve fast exe-

cution speed. It uses a quality-aware bounded search approach to 

reduce the search space and to guarantee alignment quality. Evalu-

ation using simulated and real short reads reveals that our algo-

rithm is able to achieve significant speedups in execution time over 

three popular BWT-based aligners: Bowtie, BWA and SOAP2, 

while producing comparable or even better alignment quality for 

paired-end alignments. The performance of SNP calling from short 

read alignments was also examined. While the single example 

presented is insufficient to fully evaluate the performance of all the 

aligners, it still sheds some light on the impact of the different 

aligners in terms of their SNP calling performance.  

At present, CUSHAW only supports ungapped alignment for 

single-end and paired-end reads, where it supports a maximal read 

length of 128 by default (can be configured up to 256) and a max-

imal genome length of 4 billion bases. For longer reads that tend to 

contain indels, the introduction of gapped alignment might be able 

to increase the probabilities that reads are matched to the reference 

genome. CUSHAW outputs the aligned (or paired) reads in the 

SAM format (Li et al., 2009) to take advantage of the SAMtools 

software package to facilitate the downstream analysis of align-

ments. The major challenges for short read alignment using CUDA 

are the frequent accesses to global memory with poor data locality 

and the divergence of alignment paths for different short reads. 

The poor data locality will lead to more misses in the L1/L2 caches 

for global memory accesses and the divergence of alignment paths 

cause the execution paths of the threads in a warp to diverge fre-

quently. The efficiency of accesses to global memory might be 

improved by increasing the cache size in the future generation 

GPU devices, but the divergence of alignment paths for threads in 

a warp still remains a challenge. 
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